Geometric Calculation of the Invariant Integral of Classical
Groups

Amelia Alvarez Sanchez Carlos Sancho de Salas
Universidad de Extremadura Universidad de Salamanca
e-mail: aalarma@unex.es e-mail: mplu@usal.es

Pedro Sancho de Salas
Universidad de Extremadura
e-mail: sancho@Qunex.es

Abstract

An affine k-group G = Spec A is semisimple if and only if A* splits into the form A* = kx B*
as k-algebras, where the first projection 71: A* — k is the morphism m(w) = w(1) ([2,
Th. 2.6]). The linear form wg := (1,0) € k x B* = A* will be referred to as the invariant
integral of G.

In the theory of invariants the calculation of the invariant integral wg is of great in-
terest, because it yields the calculation of the invariants of any representation. The aim
of this article is the explicit calculation of wg when G = Sl,, Gl,,, Oy, Spa, (chark = 0)
by geometric arguments and by means of the Fourier transform, which is defined below.
Although G is not a compact group, it is possible to define the invariant integral of G, the
Fourier transform, the convolution product and to prove the Parseval identity , the inversion
formula, etc.

Let A} be simple (and finite) k-algebras and let A* = [], AY. On every A}, one has
the non-singular trace metric and its associated polarity. Hence, one obtains a morphism
of A*-modules ¢ : A = ®;A; — [, Af = A*. If G = Spec A is a semisimple affine k-group
and * : A — A, a — a* is the morphism induced by the morphism G — G, g — ¢!, we
prove that ¢ is the morphism

A— A% a— wg(a™ - —)

where wg(a* - —)(b) := wg(a* - b). We will call ¢ the Fourier transform. The product
operation on A* defines, via the Fourier transform, a product on A, which is the convolution
product in the classical examples.

Let us consider a system of coordinates in G, that is, let us consider G = Spec A as a
closed subgroup of a semigroup of matrices M,, = Spec B. Then A is the quotient of B by
the ideal I of the functions of M,, vanishing on . Hence, A* is a subalgebra of B* and



one has that k- wg = A*¢ = {w € B* : w(I) = 0}. Moreover, B¢ (which is the ring of
functions of M, /G), coincides essentially with B*“, via the Fourier transform. Finally, we
prove that given w € B*®, the condition w(I) = 0 is equivalent to w(I¥) = 0, which is a
finite system of equations “in each degree”.
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